Teaching Arithmetic to Small Transformers

Nayoung Lee
University of Wisconsin-Madison

Joint work with

Emergent Properties

- LLMs when trained on vast amounts of data, eventually acquire impressive skills, including basic arithmetic

Which is *surprising*
-These tasks are not explicitly encoded in the next-token prediction objective

I apologize for the error in my previous response. You are correct that my addition was off by 10 .

The correct answer to $4809234+3509825$ is 8319069 . Thank you for bringing this to my attention.

Addition is Hard. . . Q. How do decoder models learn addition?

How do we elicit emergence fast??

- Prior research delved into emergence wrt scale
- Untangling the factors that contribute to emergence is hard:
- Data:Too much data
- Models:Too many models
- Scale:Too many parameters
- Our solution:
I. Choose the simplest setting: Addition

2. Albate, ablate, ablate

ABLATE!

$$
\begin{aligned}
& \text { Let's teach addition } \\
& \text { to nanoGPT } \\
& \text { E }
\end{aligned}
$$

Let's focus on a simple setting

- NanoGPT: small decoder-only TF architecture
- \# param: ~10M
- 6 layers
- 6 heads/layer
- 384 embedding dimension
- Character level tokenizer, i.e., $\{0,1,2 . ., 9,+, \ln \}$
- Task: Primarily addition $(+)$, extended to $(-, \times, \sqrt{ }, \sin)$
- Goal: Evaluate the importance of sampling, formatting, and prompting

How does training happen?

$$
\begin{aligned}
& 0+1=1 \\
& 1+2=3 \\
& 10+5=15 \\
& 10+20=30
\end{aligned}
$$

the loss is cross-entropy on

$$
\operatorname{Pr}\left(c|'| ', '+'^{\prime}, 2^{\prime}, '='\right)
$$

against the one hot vector that is
1 at $c=3$ and 0 elsewhere

But then...

next-word prediction so weird for arithmetic!

$P($ digit $\mid " 43+99=")=?$

Format of training examples matters!

 n-digit addition| Addition | Reversed output |
| :---: | :---: |
| $128+367=495$ | |
| MSB first: | LSB first: |
| one needs | |
| to know all | |
| 2n digits | |\quad| one needs |
| :--- |
| to know |
| 2 digits + |
| carry |

Format of training examples matters!

Addition
$128+367=495$

MSB first:
one needs
to know all $2 n$ digits

Reversed output

$$
128+367=594
$$

LSB first:
one needs to know 2 digits +
carry

Model can learn a simpler function with reversed output!

Also.. How do we add in practice?

We add by

- I) going in reverse significance order
- 2) producing intermediate carries
- 3) taking it STEP BY STEP

Varying training data formats

Data Formatting

Plain	Reverse	Detailed Scratchpad
$128+367=495$	\$128+367=594\$	Input: $128+367$
		Target:
Simplified Scratchpad		<scratch>
		[1,2,8] has 3 digits.
Input: 128+367		[$3,6,7]$ has 3 digits.
Target:		$[1,2,8]+[3,6,7], \mathrm{C}=0,8+7+0=15, \mathrm{~A} \rightarrow 5$, C->1
A $\rightarrow>5, \mathrm{C}->1$		$[1,2]+[3,6], A=[5], 2+6+1=9, A->9, \mathrm{C}->0$
A $\gg 9, \mathrm{C}>0$		$[1]+[3], \mathrm{A}=[9,5], \mathrm{C}=0,1+3+0=4, \mathrm{~A}->4, \mathrm{C}->0$
$\mathrm{A}->4, \mathrm{C}->0$.		[]$+[], \mathrm{A}=[4,9,5], \mathrm{C}=0$, END
495		</scrat

Simple formatting changes make a HUGE difference.

- eg. $A+B=C \rightarrow A+B=$ reverse(C) $=>$ MUCH faster \& accurate learning.
- Using CoT training data teaches compositions of functions by breaking it down to simpler ones to be learnt *helps a lot*

Hints on Foundations of Emergence?

Q: why does addition emerge rapidly from 0-> 100% accuracy?

A: Addition maps up to a fixed digit n , are low-rank! $\left(\mathbf{M}=\mathbf{n} \mathbf{1}^{T}+\mathbf{1 n}^{T}\right)$
"Learning" fixed length addition ~ low-rank matrix completion (LRMC)
\rightarrow goes from 0 to 100\% when you see $O(n)$ out of n^{2} samples!

MC viewpoint doesn't explain some interesting generalization aspects

NanoGPT generalizes better than MC solutions!

- NanoGPT can add unseen numbers!
- Hiding numbers in both operands
$312+527=839$
$350+527=877$
$527+439=966$$\sim\left[\begin{array}{l}312+547=859 \\ 350+529=879 \\ 526+439=965\end{array}\right.$

	No Exclusion		Excluding 100 numbers		Excluding 200 numbers		Excluding 500 numbers	
	Plain	Rev	Plain	Rev	Plain	Rev	Plain	Rev
Overall Accuracy	87.18\%	99.97\%	87.94\%	100.00\%	87.24\%	99.99\%	88.15\%	99.99\%
Exclusion Accuracy	-	-	92.55\%	100.00\%	92.15\%	99.95\%	90.85\%	100\%

- NanoGPT can add unseen digits!

The "Matrix Completion" interpretation predicts Os NanoGPT does not!

Wow, nanoGPT"knows" how to add??

(a) Trained on 1 and 3 digit addition

Q: Do LMs "understand" addition? (i.e., do they implement the ADD algorithm)

Length generalization beyond trained digit lengths is HARD

Even for lengths that are smaller than the max seen during training (eg if you skip 2-digit examples)

The models don't "fully understand" addition

They implement "pseudo" algorithms. Even hints don't help

Case 1: Just asking the question

```
Input:
8465+3541
Target:
<scratch>
[8,4,6] has 3 digits. \leftarrowRandomly drops a digit
[3,5,1] has 3 digits
[8,4,6] + [3,5,1], A=[] , C=0 , 6+1+0=7, A->7 , C->0
[8,4] + [3,5],A=[7], C=0 , 4+5+0=9 , A->9 , C->0
[8] + [3] , A=[9,7], C=0 , 8+3+0=11 , A->1 , C->1
[] + [] , A=[1,9,7] C=1 , END
</scratch>
1 197
```


They implement "pseudo" algorithms. Even hints don't help

```
Case 4: Giving all but one intermediate steps
Input:
8465+3541
Target:
<scratch>
[8,4,6,5] has 4 digits.
[3,5,4,1] has 4 digits.
[8,4,6,5] + [3,5,4,1], A=[], C=0, 5+1+0=6, A->6,C->0
[8,4,6] + [3,5,4], A=[6],C=0, 6+4+0=10,A->0,C->1
[8,4] + [3,5], A=[0,6],C=1, 4+5+1=10, A->0,C->1
[8] + [3], A=[0,0,6],C=1, 8+3+1=12,A A >2 ,C ->1
[] + [] , A=[2,0,6] C=1 END «Randomly drops a digit
</scratch>
1006
```


Many more in our paper

- beyond addition
- mixing arithmetic with text data
- few-shot prompting
- effect of noise/mistakes in prompts
- effect of scale/finetuning (nanoGPT, GPT-2, GPT-3)
- token efficiency of different formats (CoT vs plain)

50 pages worth of ablations:

Teaching Arithmetic to Small Transformers

Nayoung Lee ${ }^{*}$
University of Wisconsin-Madison nayoung.lee@wisc.edu

Jason D. Lee

Princeton University jasonlee@princeton.edu

Kartik Sreenivasan* University of Wisconsin-Madison ksreenivasa2@wisc.edu

Kangwook Lee

University of Wisconsin-Madison kangwook.lee@wisc.edu

Dimitris Papailiopoulos
University of Wisconsin-Madison
dimitris@papail.io

Abstract

Large language models like GPT-4 exhibit emergent capabilities across generalpurpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next is not the most effective for arithmetic lonstrate that conventional training dat can significantly improve accuracy. This leads to sharp phase transitions as function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, w discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities. ${ }^{2}$

Contents

1 Introduction3
2 Related Works4
3 Preliminaries and Experimental Setup5
4 Learning Addition in Small Models 7
4.2 Reversing the Out 8
5 Connection to Low-Rank Matrix Completion 8
5.2 NanoGPT Ges are Rank-2 Matrice 9
9
6 The power of Chain-of-Thought: Incorporating Intermediate Steps inTraining Data
6.1 Training on Chain-of-Thought Data 11
6.2 The Importance of Intermediate Step Design: Subtraction13
7 Extending to Longer Digit Addition 15
7.1 Training from Random Initialization 15
16
7.2 Impact of Formats on Fine-Tuning 16
17
8 Teaching Arithmetic Operations Beyond Addition 18
8.1 Extended Arithmetic Operations20
9 Mixing Shakespeare with Arithmetic Data 21
10 Fine-tuning, Scaling, and Pretraining in Larger Models 23
11 Token Efficiency Across Data Formats 26
12 Length Generalization 27
13 Limitations 30
14 Conclusion 30

Key Take-aways

- Data formatting and sampling matters
-Low-rank matrix completion partially explains the emergence of addition (0\% to I00\% accuracy), but transformers generalize better
-Length generalization is still challenging!

Open Problem:
 Can we teach LLMs using samples to implement algorithms, not just approximate functions?

Looped Transformers as Programmable Computers

Thank you

Teaching Arithmetic to Small Transformers

Nayoung Lee ${ }^{*}$
University of Wisconsin-Madison nayoung.lee@wisc.edu

Jason D. Lee

Princeton University
jasonlee@princeton.edu

Kartik Sreenivasan*
University of Wisconsin-Madison ksreenivasa2@wisc.edu

Kangwook Lee

University of Wisconsin-Madison kangwook.lee@wisc.edu

Dimitris Papailiopoulos
University of Wisconsin-Madison
dimitris@papail.io

Abstract

Large language models like GPT-4 exhibit emergent capabilities across general purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained
from random initialization, can efficiently learn arithmetic operations such as from random initialization, can efficiently learn arithmetic operations such as
addition, multiplication, and elementary functions like square root, using the nextaddition, multiplication, and elementary functions like square root, using the next-
token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train n chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, w discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities. ${ }^{2}$

Contents

1 Introduction 3
2 Related Works 4
3 Preliminaries and Experimental Setup 5
4 Learning Addition in Small Models 7
4.1 Training on Conventional Data 7
4.2 Reversing the Output . 8

5 Connection to Low-Rank Matrix Completion 8
5.1 Addition Tables are Rank-2 Matrices 9
5.2 NanoGPT Generalizes better than Matrix Completion solutions . .

6 The power of Chain-of-Thought: Incorporating Intermediate Steps in Training Data
6.1 Training on Chain-of-Thought Data 11
.2.13
7 Extending to Longer Digit Addition 15
7.1 Training from Random Initialization 15
7.2 Fine-Tuning from Pretrained Model 16
17
8 Teaching Arithmetic Operations Beyond Addition 18
8.1 Extended Arithmetic Operations 19
20
9 Mixing Shakespeare with Arithmetic Data 21
10 Fine-tuning, Scaling, and Pretraining in Larger Models 23
11 Token Efficiency Across Data Formats 26
12 Length Generalization 27
13 Limitations 30
14 Conclusion 30

