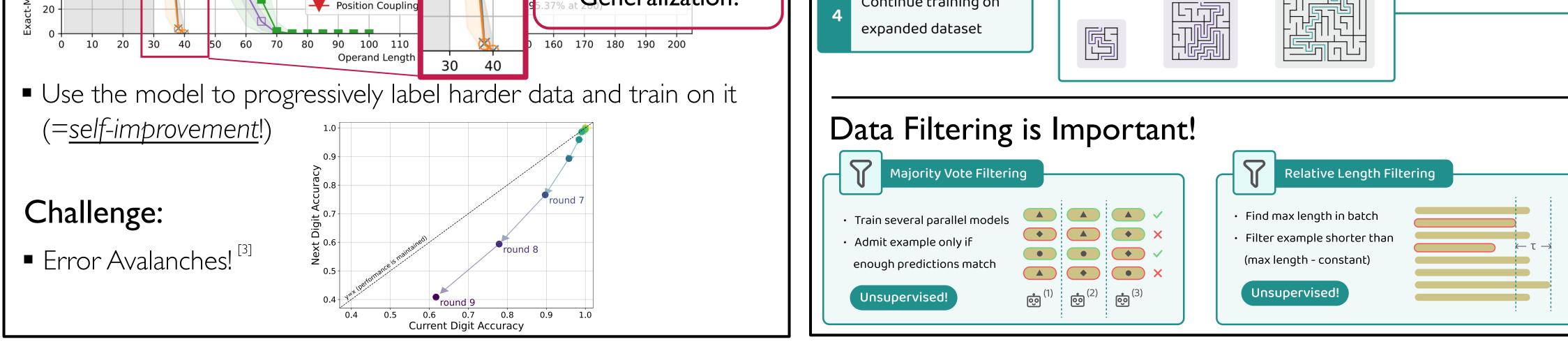
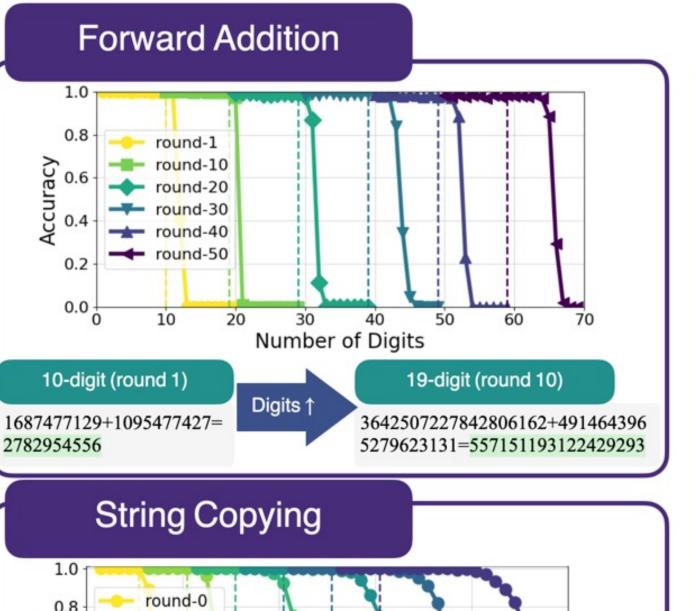


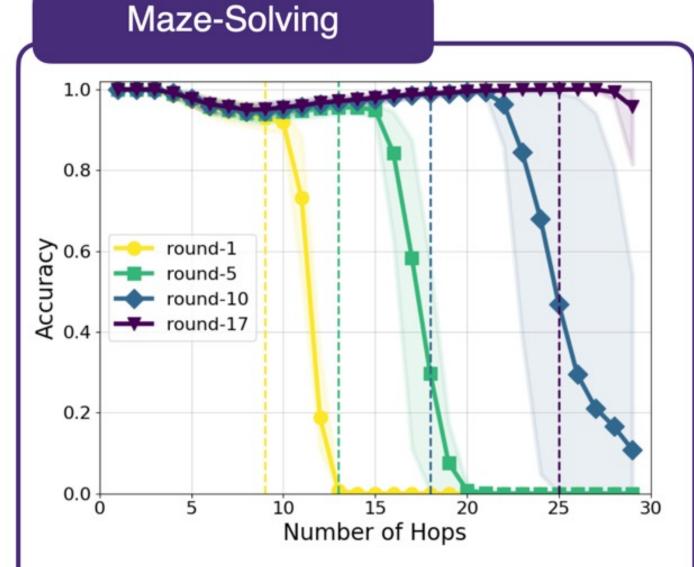
Self-Improving Transformers Overcome Easy-to-Hard & Length Generalization Challenges

Nayoung Lee^{*} Jack Cai^{*} Avi Schwarzschild^c Kangwook Lee^w Dimitris Papailiopoulos^w

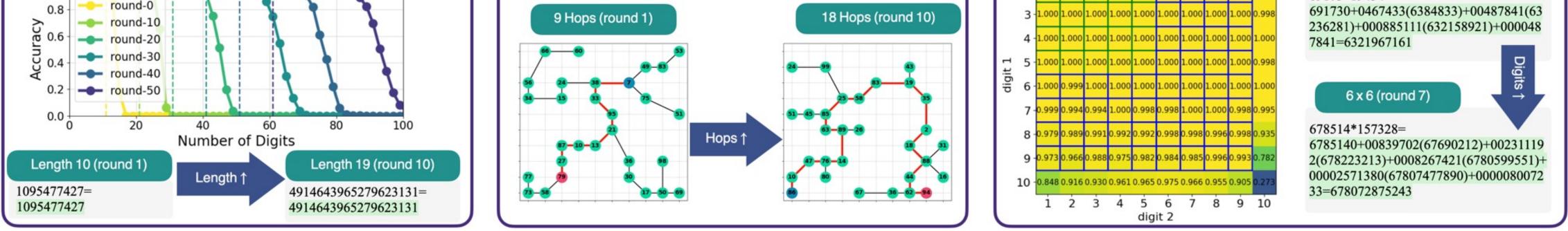

^c Carnegie Mellon University

^w University of Wisconsin-Madison

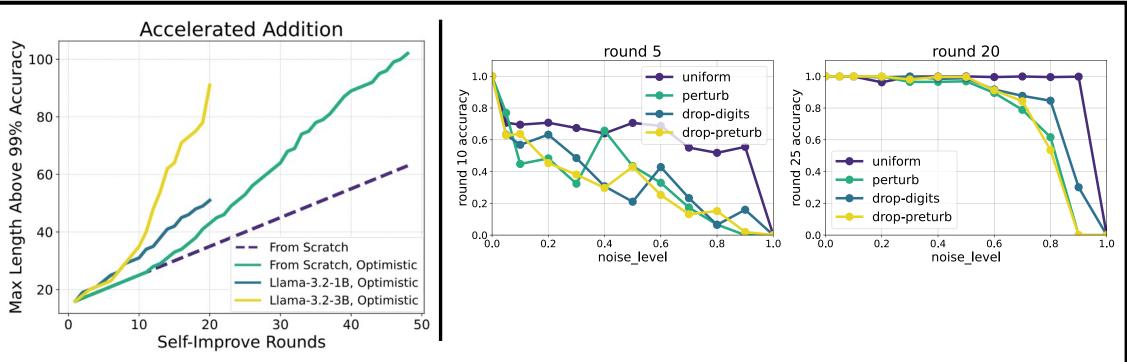



arXiv

I. Introduction	2. Self-Improvement Framework						
 Motivation: LLMs, despite their success, struggle to <u>Length Generalize</u> – extrapolating to longer sequences than seen during training 	Framework: 1 Train on initial difficulty Train Dataset [4, 5] [4, 5] [4, 5] [5] Repeat for r = 1 R self-improvement rounds						
 Recent attempts involve modifying data formats / architecture / positional encodings, leading to task-specific solutions Q: Can we solve Length Generalization 	2 Collect predictions on OOD data						
without changing data/architecture/PE?	3 Filter output based on majority vote & length						
80 Train lengths (1-3 60 → 60 → 40 → 20 → 0 → <td>4 Self-improvement Dataset</td>	4 Self-improvement Dataset						



3. Overall Results



Multiplication																	
		Round 1 (5x5)								Round 7 (6x6)							
	1-	1.000	1.000	1.000	1.000	1.000	0.917	0.000	1	1.000	1.000	1.000	1.000	1.000	1.000	0.	
digit 1	2 -	1.000	1.000	1.000	1.000	1.000	0.954	0.000	2	1.000	1.000	1.000	1.000	1.000	1.000	0.	
	3-	1.000	1.000	1.000	1.000	1.000	0.894	0.000	3	1.000	1.000	1.000	1.000	1.000	1.000	0.	
	4-	1.000	1.000	1.000	1.000	1.000	0.776	0.000	digit 1 5	1.000	1.000	1.000	1.000	1.000	1.000	0.	
	5 -	1.000	1.000	1.000	1.000	1.000	0.483	0.000	5	1.000	1.000	1.000	1.000	1.000	1.000	0.	
	6-	0.925	0.932	0.897	0.882	0.863	0.070	0.000	6	1.000	1.000	1.000	1.000	1.000	1.000	0.	
	7-	0.002	0.001	0.000	0.000	0.000	0.000	0.000	7	0.747	0.800	0.839	0.858	0.849	0.801	0.	
		i	ż	З	4 digit 2	5	6	7		i	ż	з	4 digit 2	5	6		
		Round 31 (9x9)															
	1	-1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000								5 x 5 (round 1)							
	2	1.000	1.000 1.0	00 1.000	1.000 1.0	000 1.000	1.000 1	B	69173*19434=								

4. Ablations and Error Analysis

- Rate of self-improvement can be accelerated
- Pretrained models achieve even faster acceleration
- Errors tend to be structured, and structured noise is more harmful than random noise
- Robustness to label noise improves with self-improvement rounds

5. Key Take-aways

- Length generalization can be tackled with Self-Improvement
- Model errors are structured, and error avalanches
- Unsupervised data filtering (length, majority voting) is important
- Rate of self-improvement can be accelerated

References:

[1] Cho et al., 2024, "Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers." [2] Zhang et al., 2024, "Transcendence: Generative Models Can Outperform The Experts That Train Them." [3] Zhang and Parkes, 2023, "Chain-of-Thought Reasoning is a Policy Improvement Operator." [4] Zelikman et al., 2022, "STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning." [5] Gulcehre et al., 2023, "Reinforced Self-Training (ReST) for Language Modeling." [6] Deng et al., 2024, "From explicit cot to implicit cot: Learning to internalize cot step by step."