... ' - | .
i N N . N

leaching Arithmetic to
Small Transformers

3

4

Nayoung Lee

University of Wisconsin-Madison

oint work with

Kartik aNgWOOK ason Dimitris
reenivasan | ee | ee Papaillopoulos

oent Properties

| [Ms when trained on vast amounts of data, eventually
acquire impressive skills, iIncluding basic arthmetic

Which 1s *surprising®
* [hese tasks are not explicitly encoded In the next-token
brediction objective

2023. Feb |
4809234 + 3509825 —

4809234 + 3509825 = 8319069 & GP

Looks like your addition is off by 10

| apologize for the error in my previous response. You are correct that my addition was off o &7
by 10.

The correct answer to 4809234 + 3509825 is 8319069. Thank you for bringing this to my
attention.

do we elicit emergence fast!!

* Prior research delved Into emergence wrt scale

e Untangling the factors that contribute to emergence is hard:
e Data: loo much data
* Models: loo many models
* Scale: loo many parameters

e Our solution:
. Choose the simplest setting: Addition
2. Albate, ablate, ablate

ABLATE!
_et's teach addition
1O

5y ;‘ | 'f‘-‘ -
Ly Ef 3

focus on a simple setting

» NanoGP [: small decoder-only TF architecture
param: ~ | OM

+ 6 layers

* 6 heads/layer

+ 384 embedding dimension

» Character level tokenizer; 1.e., {O,1,2..,9, +,\n}

» [ask: Primarily addrtion (4), extended to (—, X ,\/_, S1n)

—— — —

]

= — e — —_———— ———

» Goal: bvaluate the importance of sampling, formatting, ana

—low does training happen?

O+ = |
[+2 =3
[0+5 = |5
[0+20 = 30

the loss Is cross-entropy on

Pr(c | ‘ | I U R R I)
against the one hot vectOr that Is

]l at ¢ = 3 and O elsewhere

But then...

next-word prediction
so welrd for arthmetic!

P(digit| “43+99= ") = ?

-ormat of training examples matters!

N-digit aadrtion
Reversed output
| 28+36/=594

| SB first:

Addition
| 28+36/=495

MSB first:

one needs one needs

to know all
2n digrts

to know
2 digits +
carry

nat of training examples matters!

Addition Reversed output

Model can learn a simpler function
28+367=495 | |28+367=594 with reversed output!

| SB first:

MSB first:
3-digit addition
one needs
to know 2
digits +
carry

one needs

to know all
2n digits

!
>
O
(©
—
-
U
v,
<
-+
0
|_

-@— plain
reverse

0 2.5k 5k 7.5k 10k12.5k15k17.5k20k
Number of train examples

v do we add In practice!

VWe add by
» |) going In reverse significance order

» 2) producing intermediate carries

. 3) taking it STEP BY STEP

aINiNg data formats

Data Formatting

Plain Reverse Detailed Scratchpad

Q0
(-

[nput:
128+367=495 $128+367=594$ {a.3c7
Target:

) . <scratch>
Simplified Scratchpad [1,2,8] has 3 digits.

o)
o

S
-

[3,6,7] has 3 digits.

- - plai
IT‘;‘s“;t,”g” By [1,2,8] + [3,6,7] , C=0, 8+7+0=15, A->5, C->1 e
A->gS .C->1 11,2] + 13, 6] , A= 5], 246+1=9 , A->9, C->0 | o~ simplified scratchpad .
A->9,C->0 il lsas o) ER0s i oSsnsshitel | Gl detailed scratchpad |

A_>4 C_>O [] 1= [] ’ A: [49995] ’ C=O ’ END ’] | | [|)|
495 ’ </scratch> 1000 2000 3000 4000 5000 6000
495 Number of train examples

Test Accuracy (%)

N
(-

o

SImple formatting changes make a HUGE difference.
- eg. AtB=C — A+B=reverse(C) => MUCH faster & accurate learning.

- Using Col training data teaches compositions of functions by breaking it
down to simpler ones to be learnt *helps a lot*

on rFoundations of Emergence!

g Addition to 20 | wue
ofo)

ADDITION | CHART

Q: why does addition emerge
rapidly from 0->100% accuracy!

A: Addition maps up to a fixed digit n,
are low-rank! (M = nl1’ + 1n")

‘Learning’ fixed length addition ~
low-rank matrix completion (LRMC)

— goes from 0 to 100% when you

Aling-up the = LRMC see O(n) out of n? samples

addrtion chart

MC viewpoint doesn't explain
some Interesting generalization aspects

- MC solutions!

« NanoGPT can add unseen numbers! 312+50/=339 312+547=859
» Hiding numbers in both operands 350%02/=877 * 320F027=8/7
597+439=966 +439=965

Excluding Excluding Excluding
No Exclusion 100 numbers 200 numbers 500 numbers

Plain Rev Plain Rev Plain Rev Plain Rev

Overall Accuracy 87.18% 99.97% 8794% 100.00% 87.24% 99.99% 88.15%]99.99%
Exclusion Accuracy - - 92.55% 100.00% 92.15% 99.95% 90.85% | 100%

- NanoGP 1 can add unseen digits!

The "Matrix Completion” interpretation predicts Os
NanoGPT does not!

Knows how to aad?!

a) lrained on 1 and 3 digit addition Q: Do LLMs "understand’ addrtion!?
(1e., do they implement the ADD
algorithm)

Q0
-

o)
-

L ength generalization beyond trainec
digit lengths 1s HARD

K3
-

O\O
>
@
(©
-
=
v,
O
<
+J
”
I_.

N
-

cven for lengths that are smaller than

P

the max seen during training (eg If

5000 10000 15000 20000 ZCVESsiPATellsI EInalol[Sy
Iterations

The models don't “fully understand™ addrtion

ent ‘pseudo algorithmes.
) hints don't help

Case 1: Just asking the question

Input:
8465+3541
Target:
<scratch>

[8,4,6] has 3 digits. <—Random\y dI”OpS 3 digit

[3,5,1] has 3 digits.

[8,4,6] + [3,5,1] , A=[] , C=0 , 6+1+0=7 , A->7 , C->0
[8,4] + [3,5] , A=[7] , C=0 , 4+5+0=9 , A->9 , C->0
[8] + [3] , A=[9,7] , C=0 , 8+3+0=11 , A->1 , C->1

[0 + [0, A=[1,9,7] C=1 , END

</scratch>

1197

'pseudo algorithms.
nts don't help

Case 4: Giving all but one intermediate steps

Input:

8465+3541

Target:

<scratch>

[8,4,6,5] has 4 digits.

[3,5,4,1] has 4 digits.

(8,4,6,5] + [3,5,4,1] , A=[] , C=0 , 5+1+0=6 , A->6 , C->0
[8,4,6] + [3,5,4] , A=[6] , C=0 , 6+4+0=10 , A->0 , C->1
[8,4] + [3,5] , A=[0,6] , C=1 , 4+5+1=10 , A->0 , C->1
[8] + [3] , A=[0,0,6] , C=1 , 8+3+1=12 , A->2 , C->1

(1] + [1 , A=[2,0,6] C=1 END L
 — «<—Randomly drops a digit

1 006

hints don't help, they seem to just be bad at unseen digit lengths

Ny more In our paper
- beyond addition

- mIxing arithmetic with text data
- few-shot prompting
- effect of noise/mistakes In prompts

- effect of scale/finetuning (nanoGP T, GP -2, GP1-3)

- token efficiency of different formats (Co I vs plain)

Teaching Arithmetic to Small Transformers

Kartik Sreenivasan”™
University of Wisconsin-Madison
ksreenivasa2@wisc.edu

Nayoung Lee*
University of Wisconsin-Madison
nayoung.lee@wisc.edu

Jason D. Lee
Princeton University
jasonlee@princeton.edu

Kangwook Lee
University of Wisconsin-Madison
kangwook.lee@wisc.edu

Dimitris Papailiopoulos
University of Wisconsin-Madison
dimitris@papail.io

Abstract

Large language models like GPT-4 exhibit emergent capabilities across general-
purpose tasks, such as basic arithmetic, when trained on extensive text data, even
though these tasks are not explicitly encoded by the unsupervised, next-token
prediction objective. This study investigates how small transformers, trained
from random initialization, can efficiently learn arithmetic operations such as
addition, multiplication, and elementary functions like square root, using the next-
token prediction objective. We first demonstrate that conventional training data
is not the most effective for arithmetic learning, and simple formatting changes
can significantly improve accuracy. This leads to sharp phase transitions as a
function of training data scale, which, in some cases, can be explained through
connections to low-rank matrix completion. Building on prior work, we then train
on chain-of-thought style data that includes intermediate step results. Even in the
complete absence of pretraining, this approach significantly and simultaneously
improves accuracy, sample complexity, and convergence speed. We also study
the interplay between arithmetic and text data during training and examine the
effects of few-shot prompting, pretraining, and model scale. Additionally, we
discuss length generalization challenges. Our work highlights the importance of
high-quality, instructive data that considers the particular characteristics of the
next-word prediction objective for rapidly eliciting arithmetic capabilities.?

th of ablations

Contents

9

Introduction
Related Works
Preliminaries and Experimental Setup

Learning Addition in Small Models
4.1 Training on Conventional Data
4.2 Reversing the Output

Connection to Low-Rank Matrix Completion
5.1 Addition Tables are Rank-2 Matrices
5.2 NanoGPT Generalizes better than Matrix Completion solutions . .

The power of Chain-of-Thought: Incorporating Intermediate Steps in
Training Data

6.1 Training on Chain-of-Thought Data

6.2 The Importance of Intermediate Step Design: Subtraction

6.3 The Effect of Noisy Inputs on Accuracy

Extending to Longer Digit Addition

7.1 Training from Random Initialization
7.2 Fine-Tuning from Pretrained Models
7.3 Impact of Formats on Fine-Tuning

Teaching Arithmetic Operations Beyond Addition
8.1 Extended Arithmetic Operations
8.2 Jointly Training on All Five Arithmetic Tasks

Mixing Shakespeare with Arithmetic Data

10 Fine-tuning, Scaling, and Pretraining in Larger Models

11 Token Efficiency Across Data Formats

12 Length Generalization

13 Limitations

14 Conclusion

Appendix

lake-aways

* Data formatting and sampling matters

*_ow-rank matrix completion partially explains the emergence of
addition (0% to 1007% accuracy), but transformers generalize better

*|_ength generalization iIs still challenging

Jpen Problem:
Ms using samples to iImplement
>t just approximate functions?

Looped Transformers as Programmable Computers

Angeliki Giannou™”, Shashank Rajput”*, Jy-yong Sohn",
Kangwook Lee", Jason D. Lee?, Dimitris Papailiopoulos”

But just from samples, using next-

‘ Yo token prediction seems hard!
(It we hardcode)

scratchpad Instructions

pointers

iInput embedding sequence

Teaching Arithmetic to Small Transformers

Nayoung Lee* Kartik Sreenivasan™
University of Wisconsin-Madison University of Wisconsin-Madison
nayoung.lee@wisc.edu ksreenivasa2@wisc.edu

Jason D. Lee Kangwook Lee
Princeton University University of Wisconsin-Madison
jasonlee@princeton.edu kangwook.lee@wisc.edu

Dimitris Papailiopoulos
University of Wisconsin-Madison
dimitris@papail.io

Abstract

Large language models like GPT-4 exhibit emergent capabilities across general-
purpose tasks, such as basic arithmetic, when trained on extensive text data, even
though these tasks are not explicitly encoded by the unsupervised, next-token
prediction objective. This study investigates how small transformers, trained
from random initialization, can efficiently learn arithmetic operations such as
addition, multiplication, and elementary functions like square root, using the next-
token prediction objective. We first demonstrate that conventional training data
is not the most effective for arithmetic learning, and simple formatting changes
can significantly improve accuracy. This leads to sharp phase transitions as a
function of training data scale, which, in some cases, can be explained through
connections to low-rank matrix completion. Building on prior work, we then train
on chain-of-thought style data that includes intermediate step results. Even in the
complete absence of pretraining, this approach significantly and simultaneously
improves accuracy, sample complexity, and convergence speed. We also study
the interplay between arithmetic and text data during training and examine the
effects of few-shot prompting, pretraining, and model scale. Additionally, we
discuss length generalization challenges. Our work highlights the importance of
high-quality, instructive data that considers the particular characteristics of the
next-word prediction objective for rapidly eliciting arithmetic capabilities.?

Contents

9

Introduction
Related Works
Preliminaries and Experimental Setup

Learning Addition in Small Models
4.1 Training on Conventional Data
4.2 Reversing the Output

Connection to Low-Rank Matrix Completion
5.1 Addition Tables are Rank-2 Matrices
5.2 NanoGPT Generalizes better than Matrix Completion solutions . .

The power of Chain-of-Thought: Incorporating Intermediate Steps in
Training Data

6.1 Training on Chain-of-Thought Data

6.2 The Importance of Intermediate Step Design: Subtraction

6.3 The Effect of Noisy Inputs on Accuracy

Extending to Longer Digit Addition

7.1 Training from Random Initialization
7.2 Fine-Tuning from Pretrained Models
7.3 Impact of Formats on Fine-Tuning

Teaching Arithmetic Operations Beyond Addition
8.1 Extended Arithmetic Operations
8.2 Jointly Training on All Five Arithmetic Tasks

Mixing Shakespeare with Arithmetic Data

10 Fine-tuning, Scaling, and Pretraining in Larger Models

11 Token Efficiency Across Data Formats

12 Length Generalization

13 Limitations

14 Conclusion

Appendix

