
Teaching Arithmetic to
Small Transformers

Nayoung Lee
University of Wisconsin-Madison

Joint work with

Kartik
Sreenivasan

Kangwook
Lee

Jason
Lee

Dimitris
Papailiopoulos

Emergent Properties

•LLMs when trained on vast amounts of data, eventually
acquire impressive skills, including basic arithmetic

Which is *surprising*
•These tasks are not explicitly encoded in the next-token

prediction objective

2023. Feb.

Addition is Hard…
Q. How do decoder models learn addition?

How do we elicit emergence fast??
• Prior research delved into emergence wrt scale

•Untangling the factors that contribute to emergence is hard:
•Data: Too much data
•Models: Too many models
•Scale: Too many parameters

•Our solution:
1. Choose the simplest setting: Addition
2. Albate, ablate, ablate

ABLATE!
Let’s teach addition

to nanoGPT

Let’s focus on a simple setting
• NanoGPT: small decoder-only TF architecture

• # param: ~10M
• 6 layers
• 6 heads/layer
• 384 embedding dimension

• Character level tokenizer, i.e., {0,1,2..,9, +, \n}

• Task: Primarily addition (), extended to ()

• Goal: Evaluate the importance of sampling, formatting, and prompting

+ −, × , , sin

How does training happen?

0+1 = 1
1+2 =3 
10+5 = 15
10+20 = 30
…

the loss is cross-entropy on

against the one hot vector that is
 at and elsewhere

Pr(c | '1', '+', '2', '=')

1 c = 3 0

But then…

next-word prediction
so weird for arithmetic!

P(digit| “43+99= ”) = ?

 128+367=495

Addition

 128+367=594

Reversed output

MSB first:

one needs
to know all

2n digits

LSB first:

one needs
to know
2 digits +

carry

Format of training examples matters!
n-digit addition

 128+367=495

Addition

 128+367=594

Reversed output

MSB first:

one needs
to know all

2n digits

LSB first:

one needs
to know 2

digits +
carry

Format of training examples matters!
Model can learn a simpler function
with reversed output!

3-digit addition

We add by
• 1) going in reverse significance order 

• 2) producing intermediate carries 

• 3) taking it STEP BY STEP

Also.. How do we add in practice?

Varying training data formats

*Prompts: [Nye et. al.], [Zhou et. al.]

Simple formatting changes make a HUGE difference.
- eg. A+B=C A+B=reverse(C) => MUCH faster & accurate learning.

- Using CoT training data teaches compositions of functions by breaking it
down to simpler ones to be learnt *helps a lot*

→

Hints on Foundations of Emergence?

*Prompts: [Nye et. al.], [Zhou et. al.]

 Q: why does addition emerge
rapidly from 0->100% accuracy?

A: Addition maps up to a fixed digit n,
are low-rank! ()

“Learning” fixed length addition ~
low-rank matrix completion (LRMC)

 goes from 0 to 100% when you
see out of samples!

M = n1T + 1nT

→
O(n) n2Filling-up the

addition chart LRMC!≡

MC viewpoint doesn’t explain
some interesting generalization aspects

• NanoGPT can add unseen numbers!
• Hiding numbers in both operands

312+527=839
350+527=877
527+439=966

312+547=859
350+529=879
526+439=965

NanoGPT generalizes better than MC solutions!

The “Matrix Completion” interpretation predicts 0s
NanoGPT does not!

• NanoGPT can add unseen digits!

Wow, nanoGPT “knows” how to add??

*Prompts: [Nye et. al.], [Zhou et. al.]

Q: Do LMs “understand” addition?
(i.e., do they implement the ADD
algorithm)

Length generalization beyond trained
digit lengths is HARD

Even for lengths that are smaller than
the max seen during training (eg if
you skip 2-digit examples)

The models don’t “fully understand” addition

They implement “pseudo” algorithms.
Even hints don’t help

*Prompts: [Nye et. al.], [Zhou et. al.]

Randomly drops a digit←

They implement “pseudo” algorithms.
Even hints don’t help

*Prompts: [Nye et. al.], [Zhou et. al.]

hints don’t help, they seem to just be bad at unseen digit lengths

Randomly drops a digit←

Many more in our paper
- beyond addition

- mixing arithmetic with text data

- few-shot prompting

- effect of noise/mistakes in prompts
 
- effect of scale/finetuning (nanoGPT, GPT-2, GPT-3)

- token efficiency of different formats (CoT vs plain)

50 pages worth of ablations :)

Key Take-aways

•Data formatting and sampling matters

•Low-rank matrix completion partially explains the emergence of
addition (0% to 100% accuracy), but transformers generalize better

•Length generalization is still challenging!

Open Problem: 
Can we teach LLMs using samples to implement

algorithms, not just approximate functions?

Yes!
(If we hardcode)

But just from samples, using next-
token prediction seems hard!

Thank you

