
Why does addition emerge rapidly (0% à 100%)?

§ Sharp phase transition occurs at O n samples much like Low-Rank Matrix
Completion (LRMC).

§ Length generalization beyond seen number of digits is hard.

§ The model learns an accurate mapping on seen number of digits, but clearly
not the “actual” algorithm of addition.

§ For scratchpad format, the model drops a random digit.

§ LLMs trained on vast amounts of data, eventually learn basic arithmetic. Even
when these tasks are not explicitly encoded in the next-token prediction objective.

Setting:

Teaching Arithmetic to Small Transformers
Nayoung Lee*w Kartik Sreenivasan*w Jason D. Leep Kangwook Leew Dimitris Papailiopoulosw

w University of Wisconsin-Madison p Princeton University

References:
[1] Nye, et al. "Show Your Work: Scratchpads for Intermediate Computation with Language Models.”
[2] Zhou, Hattie, et al. "Teaching Algorithmic Reasoning via In-context Learning.”
[3] Kaiser, Łukasz, and Ilya Sutskever. "Neural gpus learn algorithms.”
[4] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks."

Motivation:

Q: How do decoder models learn addition?

Introduction

§ Data formatting and sampling is important in performance and sample efficiency.
§ Reverse, and scratchpad format allows the model to learn a simpler function.
§ LRMC partially explains the emergence of addition (0à100% accuracy), but

transformers generalize better.
§ Length generalization is still challenging!

Key Take-aways

Length Generalization is Challenging

Does NanoGPT “really” learn addition?

More Arithmetic (−,×,𝑠𝑖𝑛,𝑠𝑞𝑟𝑡)

Subtraction

Sine Square Root

§ Scratchpad format helps for (+,−,×) § Intermediate step design is important.

Taylor series
expansion

Newton’s
method

Connections to Matrix Completion

completing the
addition map

LRMC!≡

2-digit addition

Data Sampling / Formatting Matters

§What to balance?
1. Number of digits
2. Number of carry-ons

§ Model needs to see sufficient
number of all “cases”.

Using Step-by-Step Data Helps

1 2 8
+ 3 6 7
4 9 5

1
§ LSB à MSB
§ Carry-on
§ Step-by-Step

§ Adding intermediate steps in the train data helps
model learn addition as a compositional function.

§ Design of intermediate step is important

Power of Chain-of-Thought (CoT) data:

Arithmetic operations beyond addition:

Balanced sampling is important:

Data formatting is important:

Plain format (MSB à LSB):
§ Needs to know all 2n digits.
Reverse format (LSB à MSB):
§ Needs to know 2 digits & carry.

§ Model can learn a simpler function
with reversed output.

§ But the transformer generalizes better than LRMC!

§ Note: NanoGPT can learn addition of unseen numbers / digits in train data
(unlike LRMC)

§ Model: NanoGPT
§ Tokenization: Character-level
§ Task: Primarily Addition (+), extended to (−,×, sin, sqrt)
§ Goal: Evaluate importance of sampling, formatting and prompting.

Trained on 1&3-digit addition (Reverse)

Multiplication

§ We try to untangle the various factors in play by performing extensive
ablation studies.

Scaling up, Token efficiency, and More!!

Excluding numbers
from train data

Does our findings hold for larger models?
§ Yes!We fine-tune pretrained GPT-3 models of different scale

Fails to learn
2,4-digit addition

2023. Feb

Trained on 1-3-digit addition (Scratchpad)

Randomly drops a digit,
given 4-digit addition

Prompt

Output

§ Each operations has unique challenges (ex. negative, floating point)

Efficiency in terms of “Tokens”?

Many More in our Paper!
§ Extension to higher digits
§ Mixing arithmetic with text data

§ Fine-tuning
§ Few-shot prompting

§ Number of “tokens” in training data
varies significantly by data format

§ Reverse is most “token-efficient”

of tokens
per example

