
Why does addition emerge rapidly (0% à 100%)?

§ Sharp phase transition occurs at O n samples much like Low-Rank Matrix 
Completion (LRMC).

§ Length generalization beyond seen number of digits is hard.

§ The model learns an accurate mapping on seen number of digits, but clearly 
not the “actual” algorithm of addition.

§ For scratchpad format, the model drops a random digit.

§ LLMs trained on vast amounts of data, eventually learn basic arithmetic. Even 
when these tasks are not explicitly encoded in the next-token prediction objective.
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Motivation:

Q: How do decoder models learn addition?

Introduction

§ Data formatting and sampling is important in performance and sample efficiency.
§ Reverse, and scratchpad format allows the model to learn a simpler function.
§ LRMC partially explains the emergence of addition (0à100% accuracy), but 

transformers generalize better.
§ Length generalization is still challenging!

Key Take-aways

Length Generalization is Challenging

Does NanoGPT “really” learn addition?

More Arithmetic (−,×,𝑠𝑖𝑛,𝑠𝑞𝑟𝑡) 

Subtraction

Sine Square Root

§ Scratchpad format helps for (+,−,×) § Intermediate step design is important.

Taylor series 
expansion

Newton’s
method

Connections to Matrix Completion

completing the 
addition map

LRMC!≡

2-digit addition

Data Sampling / Formatting Matters

§What to balance?
1. Number of digits
2. Number of carry-ons

§ Model needs to see sufficient 
number of all “cases”.

Using Step-by-Step Data Helps

1 2 8
+ 3 6 7
4 9 5

1
§ LSB à MSB
§ Carry-on
§ Step-by-Step

§ Adding intermediate steps in the train data helps 
model learn addition as a compositional function.

§ Design of intermediate step is important

Power of Chain-of-Thought (CoT) data:

Arithmetic operations beyond addition:

Balanced sampling is important:

Data formatting is important:

Plain format (MSB à LSB):
§ Needs to know all 2n digits.
Reverse format (LSB à MSB):
§ Needs to know 2 digits & carry.

§ Model can learn a simpler function
with reversed output.

§ But the transformer generalizes better than LRMC!

§ Note: NanoGPT can learn addition of unseen numbers / digits in train data 
(unlike LRMC)

§ Model: NanoGPT
§ Tokenization: Character-level
§ Task: Primarily Addition (+), extended to (−,×, sin, sqrt)
§ Goal: Evaluate importance of sampling, formatting and prompting.

Trained on 1&3-digit addition (Reverse)

Multiplication

§ We try to untangle the various factors in play by performing extensive 
ablation studies.

Scaling up, Token efficiency, and More!!

Excluding numbers 
from train data

Does our findings hold for larger models?
§ Yes!We fine-tune pretrained GPT-3 models of different scale

Fails to learn 
2,4-digit addition
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Trained on 1-3-digit addition (Scratchpad)

Randomly drops a digit, 
given 4-digit addition

Prompt

Output

§ Each operations has unique challenges (ex. negative, floating point)

Efficiency in terms of “Tokens”?

Many More in our Paper!
§ Extension to higher digits
§ Mixing arithmetic with text data

§ Fine-tuning
§ Few-shot prompting

§ Number of “tokens” in training data 
varies significantly by data format

§ Reverse is most “token-efficient”

# of tokens 
per example


