

Introduction

Motivation:

LLMs trained on vast amounts of data, eventually learn basic arithmetic. Even when these tasks are not **explicitly encoded** in the **next-token prediction** objective.

Q: How do decoder models learn addition?

• We try to untangle the various factors in play by performing *extensive* ablation studies. 2023. Feb

Setting:

- Model: NanoGPT
- Tokenization: Character-level
- Task: Primarily Addition (+), extended to (-,×, sin, sqrt)
- Goal: Evaluate importance of sampling, formatting and prompting.

Using Step-by-Step Data Helps

Power of Chain-of-Thought (CoT) data:

Adding intermediate steps in the train data helps model learn addition as a *compositional function*.

Design of intermediate step is important

Length Generalization is Challenging

For scratchpad format, the model drops a random digit.

^w University of Wisconsin-Madison

More Arithmetic (-,×,*sin*,*sqrt*)

Key Take-aways

- Data formatting and sampling is important in performance and sample efficiency.
- Reverse, and scratchpad format allows the model to learn a simpler function. • LRMC partially explains the emergence of addition $(0 \rightarrow 100\%)$ accuracy), but
- transformers generalize better.
- Length generalization is still challenging!

Teaching Arithmetic to Small Transformers

Nayoung Lee^{*w} Kartik Sreenivasan^{*w} Jason D. Lee^p Kangwook Lee^w Dimitris Papailiopoulos^w

^{*p*} Princeton University

Data Sampling / Formatting Matters

What to balance?

- I. Number of digits
- 2. Number of carry-ons

Model needs to see sufficient number of all "cases".

Plain 128+367=495

Reverse

\$128+367=594\$

Plain format (MSB \rightarrow LSB): Needs to know all 2n digits.

Reverse format (LSB \rightarrow MSB): Needs to know 2 digits & carry.

Model can learn a simpler function with reversed output.

Connections to Matrix Completion

- Completion (LRMC).
- But the transformer generalizes better than LRMC!

(unlike LRMC)

Scaling up, Token efficiency, and More!!

Does our findings hold for larger models?

Addition	pretrained	Finetuned with 1000 samples						
	GPT-3	Plain	Reverse	Simplified Scratchpad	Detailed Scratchpad			
Davinci	2%	34%	80.9%	88.7%	99.5 %			
Curie	0.0%	1.4%	12.3%	10.7%	99.7%			
Ada	0.0%	0.3%	6.3%	0.6%	99.8%			

Efficiency in terms of "Tokens"?

- Extension to higher digits
- Mixing arithmetic with text data

References:

- [2] Zhou, Hattie, et al. "Teaching Algorithmic Reasoning via In-context Learning."
- 3] Kaiser, Łukasz, and Ilya Sutskever. "Neural gpus learn algorithms.''

• Sharp phase transition occurs at O(n) samples much like Low-Rank Matrix

lusion	Excluding		Excluding		Excluding	
	100 numbers		200 numbers		500 numbers	
Rev	Plain	Rev	Plain	Rev	Plain	Rev
99.97%	87.94%	100.00%	87.24%	99.99%	88.15%	99.99%
-	92.55%	100.00%	92.15%	99.95%	90.85%	100%

• Note: NanoGPT can learn addition of unseen numbers / digits in train data

• Yes! We fine-tune pretrained GPT-3 models of different scale

Fine-tuning

Few-shot prompting

I] Nye, et al. "Show Your Work: Scratchpads for Intermediate Computation with Language Models."

4] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks."