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Abstract

We discover the existence of SUPER SEEDS, extremely compressible models, that
can be decompressed to their full accuracy within a few epochs of dense training.
SUPER SEEDS achieve compression rates of 250− 1000× and are orders of mag-
nitude smaller than state-of-the-art model compression baselines, which typically
require minimal accuracy loss. We discover that one can trade off some accuracy of
the model with significant gains in storage cost, at a relatively small decompression
cost. The main application of SUPER SEEDS is archival storage, and settings where
communicating a fully trained model carries significant cost. Our Code is available
at https://anonymous.4open.science/r/SuperSeed-4834/

1 Introduction

The recent success of extremely large-scale, overparameterized neural networks (Brown et al., 2020;
Ramesh et al., 2021; Jumper et al., 2021) in various domains has kept motivating the community
to build models with an ever increasing number of parameters. These large networks consequently
require high memory footprint, storage space, and communication costs for model compression.

Typically, model compression techniques aim to maintain the accuracy of the original uncompressed
model, while minimizing the numbers of bits required to store the model parameters. The state-
of-the-art model compression techniques are able to reach moderate to high levels of compression
across many modern tasks (Han et al., 2015a,b; Wen et al., 2016; Frankle & Carbin, 2018; Gale et al.,
2019; Hubara et al., 2017; Wiedemann et al., 2020; Khodak et al., 2021; Wang et al., 2021). This is
typically achieved by compressing through sparsification and low-precision, and the use of optimized
data structures. For instance, for standard benchmarks such as CIFAR and ImageNet classification,
it has been shown that neural networks can be compressed by 10− 50×, without loss of accuracy
(Han et al., 2015a; Wiedemann et al., 2020; Isik et al., 2021).

We note that the requirement for no loss of accuracy stems from the hidden assumption that com-
pressed models will be deployed without any additional processing. In this work, we challenge this
very assumption made in the literature. That is, we consider a more general model compression
problem where compressed models can be ‘retrained’ before being deployed, assuming that the same
training data is available. Under this new setting, compressed models are deemed good as long as
they can ‘recover’ high accuracies after appropriate retraining.

Clearly, this new setting will allow us to enjoy a much higher level of compression rate than before.
Indeed, not storing anything is a valid scheme as one can always recover the full accuracy by training
the model from scratch. However, this would require a large compute cost. On the other hand, the
classic model compression algorithms can be viewed as another extreme case where models are
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compressed only up to the point where no retraining is required. What has not been explored is the
trade-off between these two extreme cases – can we achieve a higher model compression rate while
requiring minimal retraining cost? Inspired by this, we attempt at answering the following question
on the fundamental trade-off between compression rate and retraining cost:

For a given level of model compression, what is the minimum computation
required to recover a high accuracy model?

Here, we assume that during “decompression” we have access to the full training dataset, and hence
the storage cost is measured only in terms of the size of the compressed model. This assumption is
reasonable in many practical scenarios where one must compress a large number of models trained
on a common dataset. The computation cost is measured as the number of retraining epochs required
to attain the full accuracy.

Surprisingly, we find that indeed we can achieve very high levels of compression, by only requiring
a relatively small amount of retraining to reach high accuracy. For various benchmark image
classification tasks, we empirically show the existence of 1000× compressed models that can be
retrained to full accuracy within just 20% – 66% of the epochs needed for training a randomly
initialized model. We dub this quickly-recoverable & highly compressed model as SUPER SEEDS.
These SUPER SEEDS are computationally easier to find than other compressed models which maintain
accuracy and lottery tickets (Frankle & Carbin, 2018). Based on empirical observations, we further
conjecture that there is a lower bound on the number of bits SUPER SEEDS can be compressed into,
to speed up the training of neural network. Given less information than this threshold, it is infeasible
to outperform training from scratch.

We further confirm that SUPER SEEDS passes sanity checks: (1) when we shuffle or reinitialize
the weights of SUPER SEEDS, it has worse convergence speed compared with SUPER SEEDS, and
(2) when we sample a random network having the same layer-wise sparsity pattern with SUPER
SEEDS, it also converges slower than SUPER SEEDS. This shows that SUPER SEEDS indeed achieve
a non-trivial storage-computation tradeoff.

2 Related Work

Reducing storage/computation burden. To reduce the required resources for training/inference,
model compression has been considered for several decades. This paper focuses on two main
techniques for model compressing: pruning and quantization. Various pruning/quantization tech-
niques (Gao et al., 2019; Park et al., 2020; Lee et al., 2020; Isik et al., 2021; Han et al., 2015a; Fan
et al., 2020) have been suggested to compress the model while maintaining the full accuracy of dense
model. The present paper has a different goal with these existing works: we allow losing accuracy
after extreme compression and aim at reaching the full accuracy after retraining for only few epochs.
Recently, several methods (Hu et al., 2021; Houlsby et al., 2019) have been suggested to reduce the
storage/computation burden of fine-tuning language models on downstream tasks.

Training a sparse network. Given a highly sparse network which does not preserve full accuracy
of dense model, one can consider two options for training this network: (1) sparse training which
only updates the unpruned weights, and (2) reviving the pruned weights and moves towards the dense
regime. Most of the existing works lie in the first category, e.g., lottery tickets (Frankle & Carbin,
2018; Frankle et al., 2020a; Wang et al., 2019; Sreenivasan et al., 2022; Su et al., 2020; Frankle et al.,
2020b). Unlike these existing works, the current paper is in the second category: we allow moving
from sparse regime to dense regime, and expects quick recovery of full accuracy.

Speeding up convergence. Recall that our work aims at reducing the number of epochs required to
reach full accuracy, so that we can enjoy a good tradeoff between computation and storage. Some
works have focused on the ability to train or fine-tune a model within only few epochs. The authors
of (Lai et al., 2021) empirically showed the existence of sparse subnetwork that is quickly fine-tunable
to downstream automatic speech recognition tasks. However, this observation is on the non-extreme
(greater than 10% sparsity) compression regime, while our work explores the quick fine-tunability of
extremely sparse models (around 0.1% sparsity). An interesting work (Smith & Topin, 2019) showed
that learning rate control can speed up the convergence of a dense model significantly. Unlike (Smith
& Topin, 2019), our work focuses on compression-retraining framework and explores the convergence
speed of a sparse model transformed to a dense model with full accuracy.
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Figure 1: Conceptual visualization of a use case of SUPER SEEDS, a highly compressed model that
can be retrained quickly. The size of a trained dense small VGG-16 model for CIFAR-10 is 50MB.
Our goal is to archive an extremely compressed version (50KB) of this model such that it can be
quickly recovered to full accuracy within few epochs of retraining. We first generate and store such
compressed model (SEEDPQ) using pruning, quantization, and a customized method of storing sparse
networks. Then, when we want to deploy a model with high predictive performance, we load the
stored seed and retrain it. The suggested method trades off (1) storage for archiving the model and
(2) computation for retraining the model to reach full accuracy.

3 SUPER SEEDS

In this section, we formally describe the proposed framework for creating and using SUPER
SEEDS.Fig. 1 depicts the use case for SUPER SEEDS, where we want to compress a good model
into a SUPER SEED for storage and archival purposes, and then quickly decompress it for usage and
deployment. In the following, we describe each of the two phases (compression and decompression).

Framework Our framework consists of two phases: (1) compression and (2) decompression.
Note that unlike existing model compression techniques that aim for compressing models without
compromising their performance, we take post-processing into account during decompression. In
other words, we consider a lossy compression, with a expectation that the compressed model can
quickly recover full performance with just a little retraining.

We emphasize that the novelty of this paper is in proposing the extreme compression-decompression
framework for better storage-computation tradeoff, not in the algorithm for generating SUPER SEEDS.
One can use any off-the-shelf pruning/quantization schemes in our framework.
While SUPER SEEDS are not restricted to specific compression and decompression methods, the
particular scheme that we have used to generate our SUPER SEEDS and decompress it, is based
on pruning (P) followed by quantization (Q). We use the subscript to indicate the algorithm used
to create our SUPER SEEDS, for example, SEEDPQ using pruning and quantization. We use this
technique as an example to explain our compression - decompression framework.

Phase 1, Compression: We use a modified iterative magnitude pruning (IMP) with learning rate
rewinding Renda et al. (2020) to prune our model and achieve extreme sparsity, e.g., 0.3% sparsity.
That is, we go through multiple rounds of training and then pruning 20% or 25% of the smallest
weights in the model (global pruning). After pruning in each round, the learning rate is rewinded
back to the initial setting.

To further compress the model, we quantize its weights using adaptive quantization techniques based
on k-means clustering. We then serialize the weights of the compressed model and store it into a
memory-efficient way. As shown in Fig. 1, SUPER SEEDS created in this way achieve a 1000×
reduction in storage compared to original high accuracy model. Note that at this compression level,
the model loses significant accuracy. However, as we show in Section 4, the model retains enough
structure and information to be easily trained back to full accuracy in the decompression phase.

Phase 2, Decompression: Given SEEDPQ, we first deserialize it into a neural network, and then
retrain the model to reach high accuracy. We show that SEEDPQ require 1.6× to 5× fewer epochs to
reach the full accuracy, compared with training from scratch. The small size of SEEDPQ, and the fact
that they can be retrained to full accuracy quickly, allow them to achieve a good tradeoff between
computation and storage (or communication).

We also highlight that creating SEEDPQ is significantly cheaper than the original method Renda et al.
(2020). While iterative pruning methods require high computational cost since the model aims to
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retrain to full accuracy after each pruning round, we show in Section 4 that using only 5 epochs
(× 1

18 ) from Renda et al. (2020)) for training at each round, we can obtain SUPER SEED.

4 Experiments

Here we show experimental results on the proposed SUPER SEEDS and provide evidences that our
framework achieves significant storage-computation trade-off in various classification tasks. We also
report experimental results that helps better understand the behavior of SUPER SEEDS.

Tasks. We test our algorithm on (Task 1) CIFAR-10 (Krizhevsky et al., 2009) classification on
ResNet-18 (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014), (Task 2) CIFAR-100
classification on ResNet-34 and VGG-16, (Task 3) ImageNet (Deng et al., 2009) classification on
ResNet-50, and (Task 4) next-word prediction task on LSTM model (Hochreiter & Schmidhuber,
1997) using WikiText-2 dataset (Merity et al., 2016). (Task 5) transfer learning task of classifying
Caltech-101 dataset (Fei-Fei et al., 2004) using ImageNet pretrained ResNet-18.

Suggested schemes. We generate SEEDPQ in three steps, (1) pruning, (2) quantization and (3)
serialization. First, we use iterative magnitude pruning (IMP) with learning rate rewinding (Renda
et al., 2020) to get a sparse model2. The sparsity of the model is set to 0.317% or 0.38%, depending
on different tasks. Second, we quantize the weights of pruned network into n = 2 bits, by using
k-means clustering on the weights at each layer, following (Han et al., 2015a). The quantized weights
can be represented as {w1, · · · , w2n}. Third, we store the quantized weights in a key-value pair,
where the key is wi and the value is the set of positions within a weight tensor having wi as the
weight. Detailed settings and hyper-parameter choices are provided in Appendix.

Comparisons. We compare SEEDPQ with five baselines. The first two baselines are existing
methods: (i) loading SoTA compression method, i.e., the best of (Isik et al., 2021; Renda et al.,
2020; Frankle & Carbin, 2018), denoted by (SoTA compression) and (ii) training a dense model
starting from random weights, denoted by (Scratch). We also test on three other baselines for the
purpose of sanity-checking SEEDPQ: (iii) training a sparse model obtained by shuffling the weights
of SEEDPQ at each layer, denoted by (Weight shuffle), (iv) training a sparse model obtained by
re-initializing only the non-zero weights of SEEDPQ, denoted by (Weight reinit), and (v) training a
sparse model having random weights and masks, where the sparsity ratio of each layer matches that
of SEEDPQ, denoted by (Matching ratio). Note that the baselines (iii), (iv) and (v) are inspired by the
existing works Frankle et al. (2020b); Su et al. (2020) for sanity-checking the pruning methods. In
generating the baseline (v), we re-initialized the random mask until the generated model architecture
is connected.

Fine-tuning options. We consider various options for fine-tuning SUPER SEEDS and baselines.
(i) training all layers, (ii) training only the last linear layer, (iii) training only batchnorm layers, (iv)
LP-FT (Kumar et al., 2022) which first trains the last linear layer for few epochs and then train all
layers, (v) sparse training which only trains the weights that are non-zero before training. We found
that the option (i) is outperforming others, thus mainly focus on the result of (i) in the main body.
Please check Appendix for full results on different fine-tuning options.

Performance metrics. We use two metrics to evaluate the trade-off between storage and com-
putation. First, we define the normalized minimum epoch as the number of epochs required for
achieving the full test performance (accuracy or perplexity), normalized by the number of epochs
required for vanilla training to reach the SoTA performance of given data/network. Here, ‘full test
accuracy’ is defined as 1% below the highest accuracy of training from scratch, as in Frankle et al.
(2020b). The ‘full test perplexity’ is defined as (the lowest perplexity achievable by training from
scratch)+10. Note that it is desired to have small normalized minimum epoch, for reducing the
computation cost. Second, we define the compression rate of a model as the storage gain of the
compressed model compared with fully dense model. Note that having large compression rate is
better in order to reduce the storage cost.

2For the results of different pruning methods we tested, please see Appendix. In the main body, we focus on
the method that provides the best performance in terms of the convergence speed.
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Figure 2: Performance of SEEDPQ and baselines on CIFAR-10, CIFAR-100 classification tasks.
(Top) Convergence curves for SUPER SEEDS (0.3% sparsity, 2-bit quantization) and baselines.
Compared with training from scratch (yellow line), SEEDPQ (pink line) enjoys 1.5× to 5× faster
convergence. One can also confirm that SEEDPQ is having faster convergence than matching
ratio, weight shuffle and weight reinit curves, which implies that SEEDPQ passes the sanity checks.
(Bottom) Tradeoff between the model compression rate (storage) and the normalized minimum
epochs (computation) required to reach the full accuracy. Here we compare the tradeoff curve of
SEEDPQ with three baselines: training from scratch (yellow dot), loading SoTA compression model
(green dot) and loading SoTA dense model (black dot). We also added the boundary of achievable
regime of conventional methods as light green line. Note that the left bottom corner surrounded by
light green line is not achievable by existing methods. One can confirm that SEEDPQ is crossing this
boundary and opens up the possibility of trading off storage and computation.

4.1 Performance of SUPER SEEDS

CIFAR-10, CIFAR-100 classification Fig. 2 shows the performance of SEEDPQ on CIFAR-10,
CIFAR-100 classification task. The top row compares the convergence speed of SEEDPQ and training
from scratch, showing that our method gains 1.6× to 5.3× speed-up depending on the task. We also
perform sanity check on our method by comparing with three baseline models: shuffle, reinit and
matching ratio. SEEDPQ outperforms the three baseline models, implying that our SUPER SEEDS
has a meaningful property in the structure and weights for quickly reaching the full accuracy.

The bottom row shows the tradeoff between storage and computation achievable by SEEDPQ, and
compare it with SoTA compression3, training from scratch, and loading fully dense pretrained model.
The light green box is the region left unexplored from previous works since this level of compression
does not maintain the full accuracy. We observe that SEEDPQ crosses this boundary, providing
an evidence on the existence of SUPER SEEDS. In addition, comparing the purple (32 bit, i.e.,
no quantization) with pink (2 bit quantization), we show that quantization allows a better tradeoff
between storage and computation. Compared with SoTA compression (Isik et al., 2021; Renda et al.,
2020; Frankle & Carbin, 2018), SEEDPQ trades 18.5× compression (storage) gain with 20 to 30
epochs of training (computing). Compared with training from scratch, SUPER SEEDS trades 16× to
5.3× smaller epoch with storing 1

500 of the size of the model.

ImageNet classification and language tasks Observing a promising result on CIFAR-10 and
CIFAR-100 classification tasks, we extend our experiments to ImageNet classification and language
tasks. Previous results on sparsifying/compressing ImageNet models showed 10× to 50× (Han
et al., 2015a; Wiedemann et al., 2020; Isik et al., 2021) compression rates without losing more
than 1% accuracy. Iterative magnitude pruning based methods generally requires multiple rounds
of training and pruning, where each round consists of multiple iterations (90 epochs (Renda et al.,
2020)), making the sparsifying process computationally expensive.

3Note that while Isik et al. (2021) provides compression rate identical to our performance metric, Renda et al.
(2020); Frankle & Carbin (2018) focus on sparsity levels. For the latter works, we use 1/(fraction of remaining
parameters) as the compression rate, which is generally larger than the actual compression rate obtained from
size of stored models.
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Figure 3: Performance of SEEDPQ and baselines on ResNet-50 for ImageNet classification and
LSTM for word language tasks. The behavior of SEEDPQ is similar to what has been reported for
CIFAR classification tasks in Fig. 2.

Table 1: The size of the model obtained by our SUPER SEEDS and existing model compression
methods: SuRP (Isik et al., 2021) and IMP (Renda et al., 2020; Frankle & Carbin, 2018). For each
scheme, we show (compression rate, normalized minimum epoch), which corresponds to (storage,
computation) cost for getting full accuracy. Note that the compression rate of SUPER SEEDS is at
least 5− 10× higher than that of existing methods, at the cost of a small fraction of computation.

Model, Data Original size SUPER SEEDS SuRP IMP

ResNet-18, CIFAR-10 44.77MB 140KB (×319, 1
3.38 ) 3.1MB (×15, 0) 2.25% sparse (×44, 0)

Small-VGG-16, CIFAR-10 58.98MB 217KB (× 272, 1
5.33 ) 1.1MB (×54, 0) 2.25% sparse (×44, 0)

ResNet-34, CIFAR-100 83.45MB 324KB (× 257, 1
3.32 ) - -

Small-VGG-16, CIFAR-100 57.78MB 219KB (× 264, 1
3.67 ) - -

ResNet-50, ImageNet 102.55MB 368KB (× 279, 1
1.57 ) 6.1MB (×16, 0) 10.7% sparse (×9.31, 0)

Instead, we reduce the number of epochs per round from 90 epochs to 5 epochs to speed up the
process of making our SEEDPQ. The SEEDPQ created with a short version of IMP is 272× more
compressed than a dense pretrained ResNet-50 model while requiring 66% of epochs to reach full
accuracy compared with training from scratch. We also note that other sanity check baselines (weight
shuffle, weight reinit) are unable to reach full accuracy. We also ran experiments on next-word
prediction task for LSTM model trained on WikiText-2 dataset. Results show that compressed
SEEDPQ can enjoy quick convergence to the full perplexity.

Transfer Learning Task We provide a preliminary results on applying SEEDPQ to transfer learning
tasks. We loaded ResNet-18 model pretrained on ImageNet, generated SUPER SEEDS for downstream
task (Caltech101 classification), and then retrain the compressed model to reach high accuracy. The
results are provided in Fig. 10 in the Appendix.

Compression rate of SUPER SEEDS and SoTA baselines Table 1 shows the size of SUPER SEEDS
created at each image classification tasks, and compare it with original model size as well as SoTA
compression methods (Isik et al., 2021; Frankle & Carbin, 2018). One can confirm that SUPER
SEEDS is orders of magnuitude smaller than SoTA methods, and can be retrained to full accuracy by
using dsmall fraction of computation.

4.2 Analysis on the fast recovery of SEEDPQ

Here we analyze the fast recoverability of SEEDPQ in various perspectives.

Weight distribution Fig. 4 shows the weight distribution of VGG-16 networks before and after
training on CIFAR-10 dataset. We compare our sparse SEEDPQ with a random network with matching
ratio (MR) in layer-wise sparsity level. We observe that the SEEDPQ have a smaller change in the
weight distribution before and after training then MR. Measuring the L2-norm of the distance between
parameters of models before and after training, This provides one explanation to fast recoverability
of SEEDPQ: it requires smaller change of weights to reach full accuracy, compared with MR.

Distance of global minima We conjecture that SEEDPQ we created is close to the global minima,
thus, making the retraining easier. We validate this conjecture by observing the difference in the
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random sparse network with matching ratio (MR), before training (test accuracy = 10.0%)
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random sparse network with matching ratio (MR), after training (test accuracy = 92.7%)
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Figure 4: Weight distribution of VGG-16 networks before/after training on CIFAR-10. (a), (b):
SEEDPQ with 0.3% sparsity, (c),(d): 0.3% sparse random network with matching ratio (MR). As in
(a) and (c), both models are sparse before training, due to the design of SEEDPQ. As shown in (b)
and (d), the weights of SEEDPQ have a smaller change in the distribution during training, compared
with the weights of MR. Recall that in Fig. 2b, SEEDPQ quickly reaches the full accuracy within 30
epochs, while MR slowly reaches to high accuracy. This weight distribution comparison explains
why SEEDPQ can enjoy quick recoverability: SEEDPQ needs less effort in adjusting the weights to
get full accuracy.

global minima reached by following different retraining trajectories from three initial points: (a)
SEEDPQ, (b) random dense model, and (c) Matching Ratio (MR). From each of the three each initial
points, we shuffle the sequence of training data batches to create five distinct training trajectories
and train the models to full convergence. Cosine similarity is used to measure the difference in the
parameters of the converged models. Results in Fig. 5 demonstrate that the global optima achieved
by SEEDPQ are close in distance, while training from other initial points (random dense, MR) lead
to different global optima, distant from each other. This aligns with our conjecture that SEEDPQ is
close to the optimum that is highly compressed and can achieve fast recovery.

Linear mode connectivity Extreme quantization, in the process of making the SEEDPQ, perturb
the sparsified model in a way that the model is only as good as random guessing. We analyze the effect
of quantization on SEEDPQ in the loss landscape by observing the linear mode connectivity (Frankle
et al., 2020a) of the models trained from SEEDPQ (1) before and (2) after quantization. We linearly
interpolate the two models by sampling 30 evenly spaced points between the two and measure the
test error on each of these points. Fig. 6 demonstrates that the two models are linearly connected.
This suggests that while quantization initially perturbs the starting point of the model before training,
it does not move the model too much.
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Figure 5: Cosine similarity of five different models converged from the three initial points: (a)
SEEDPQ, (b) random dense model, and (c) Matching Ratio (MR). We train VGG-16 on CIFAR-10
from each of the three initial points, with five different learning trajectories and measure the cosine
similarity of the parameters of the converged models. Each models are trained to full convergence for
150 epochs. Results show that while training from scratch or MR leads to local minima that is distant
from each other, SEEDPQ converges to close local minima. This agrees with our conjecture that
SEEDPQ provides a compressible initialization point close to the optimum, where training is fast.
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Figure 6: Linear mode connectivity between (1) model trained from SEEDPQ with quantization
and (2) model trained from SEEDPQ without quantization. The proportion of remaining weights
of SEEDPQ on ResNet-18, VGG-16s and ResNet-34 are 0.32%, 0.32%, 0.38%, respectively, while
all four models are quantized to 2bits. Following the methodology from (Frankle et al., 2020a), we
linearly interpolate the two models with ratio from 30 evenly spaced points between 0 and 1, and
plot the test error of the interpolated model. Results show that model optimized from SEEDPQ with
quantization are linearly connected with models optimized from SEEDPQ without quantization. This
implies that the quantization process does not move the SEEDPQ too much.

5 Discussion

As is evident from our experiments (cf. Figure 2), SUPER SEEDS can be retrained to full accuracy in
a few number of epochs, as compared to training a random model from scratch. Further the distance
between the retrained SEEDPQ model and the SEEDPQ model is much smaller than the distance
between model trained from scratch and its original, random initialization (cf. Figure 4). Thus the
phenomenon of SEEDPQ opens up interesting research questions regarding the loss landscape of
neural networks, which we discuss in the subsections below.

Existence of SUPER SEEDS Our experimental results show the existence of SUPER SEEDS for
different models on various tasks. However, we see that the amount of compression we can achieve
varies, depending on the model and task at hand. For example, we see a much better computation-
compression trade-off for VGG-16 on CIFAR-10, than MobileNet-V2 We think that for very overpa-
rameterized models, SUPER SEEDS can achieve a good computation-compression trade-off, whereas
difficult tasks like ImageNet might not have very compressible SUPER SEEDS.

Generalization error We think that models trained from SUPER SEEDS should enjoy good the-
oretical bounds on their generalization error. This is because SUPER SEEDS enjoy two favourable
properties, both of which have been used in the literature to prove generalization bounds. The first
is the small bit complexity of SUPER SEEDS. Thus SUPER SEEDS themselves represent a very
small hypothesis class, which indicatesthat VC-dimension style arguments can be used to prove
generalization bounds. Further, retraining them only needs a few epochs, and we also know that the
model reached after retraining is not too far from the SUPER SEEDS (cf. Figure 4). Hence, ‘train
faster, generalize better’ style techniques (Hardt et al., 2016) that use algorithmic-stability (Bousquet
& Elisseeff, 2000) to bound generalization error are relevant. Although, these two techniques cannot
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directly be applied, but we believe a combination of the two might give better generalization bounds
than the ones we have for models trained from scratch.

Computational complexity of generating SUPER SEEDS versus Lottery Tickets Vanilla iterative
magnitude pruning (IMP) methods Frankle & Carbin (2018); Renda et al. (2020) used for creating
Lottery Tickets typically require large number epochs to generate sparse networks. On the other hand,
our ImageNet experiments use a shorter version of IMP, requiring only 5 epochs per pruning round to
generate SUPER SEEDS for ImageNet classification task. These SUPER SEEDS still perform well
in the sense that they can be retrained to full accuracy quickly. We believe that this relative ease of
generating SUPER SEEDS as compared to Lottery Tickets is due to the fact that a) Lottery Tickets are
constrained to be a sparse subnetwork of the network at initialization, whereas SUPER SEEDS do not
have any such restrains, and b) Lottery Tickets are designed for sparse retraining whereas SUPER
SEEDS are designed for dense retraining.
Density of global minima. We also observe that the global minima found by retraining SUPER
SEEDS are close to the SUPER SEEDS themselves (cf. Appendix). Hence, there exist global mimima
which have highly compressible models within a small neighbourhood of them. Since given a
serialization / deserialization scheme, there can only be a few models in the parameter space with
small description length (that is, a few SUPER SEEDS), and yet we are able to show that at least one
global minima lies close to one such SUPER SEEDS. Since the serialization / deserialization scheme
itself is independent of the data and model, and in particular, independent of the distribution of global
minima, we get that the number of global minima has to be significantly large for one such global
minima to lie close to one of the SUPER SEEDS. This can give some insight into the number of global
minima in the loss landscape of deep neural networks.

6 Conclusion and Future Work
In this paper, we focused on the extreme regime of model compression and explored the achievable
storage-computation tradeoff in the proposed compression-decompression framework. We empirically
showed the existence of SUPER SEEDS, an extremely compressed model that can be quickly recovered
to full accuracy, for various benchmark image classification tasks.

6.1 Limitations and Future Work

While we mainly focus on the fast recoverability of SUPER SEEDS in terms of test accuracy, it is
unclear whether other aspects such as fairness and robustness are preserved with extreme compression.

Currently, we mostly tested the efficacy of SUPER SEEDS generated by iterative pruning methods.
Exploring the computation-storage tradeoff achievable by pruning at initialization methods (Lee et al.,
2018; Wang et al., 2020; Tanaka et al., 2020; Sreenivasan et al., 2022) and post-training pruning
methods (Lee et al., 2020; Park et al., 2020; Isik et al., 2021) remain as interesting future directions.
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A Experimental Setup

In this section, we summarize the datasets and models used in our experiments as well as hyper-
parameter choices of creating and retraining the SEEDPQ. All of our experiments are run using
PyTorch 1.9.1 on Nvidia 2080 TIs, Nvidia 3090s, and Nvidia V100s. Detailed dependencies are
provided on our anonymized github repository4.

A.1 Dataset

In this section we provide details on the dataset used in our experiments.

CIFAR-10. CIFAR-10 dataset consists of 60,000 images of 10 classes, with size 32× 32. 60,000
images are split into 50,000 images for train dataset and 10,000 images for test dataset. We further
randomly split the training images by size 45,000 for train dataset ad 5,000 for validation dataset.
We follow the standard augmentation of channel-wise normalization, horizontal flipping and random
cropping.

CIFAR-100. CIFAR-100 dataset consists of 60,000 images of 100 classes (600 images per class),
which are split into 50,000 images for train dataset and 10,000 images for test dataset. Identical to
CIFAR-10, we randomly split the train images to 45,000 and 5,000 for train and validation dataset and
use follow the standard augmentation: channel-wise normalization, horizontal flipping and random
cropping.

Caltech-101. Caltech-101 dataset contains images of 101 different categories, each with around
40 800 images and size 200 300 pixels. We resize each images to 224× 224 and use channel-wise
normalization. Train, validation, test dataset are split by 60%, 20%, 20%.

WikiText-2. WikiText-2 consists of 33,278 vocabulary and 2.6% out of vocabulary (OoV) tokens.
Train, validation, test dataset are split by 600, 60, 60 articles with 2,088,628, 217,646, and 245,569
tokens respectively.

A.2 Model

Implementation of models for image classification are based on the Github repository5 for CIFAR-10
and CIFAR-100 dataset models, and Github repository6 for ImageNet dataset models. LSTM model
for language tasks are based on the Github repository7. Note for ResNet models, we do not use any
biases for the convolutional layers, however, VGG-16 models do have biases for convolutional layers.
Output layer (fully connected layer) for all models have biases. As in (Frankle & Carbin, 2018),
pruning operations are only performed on weights on linear and convolutional layers and are not
performed on batchnorm layers or bias terms. We use PyTorch default initialization for all layers.

ResNet. Detailed ResNet architectures used in our experiments are given in Table 2. For CIFAR-10
and CIFAR-100 image classification tasks, we have the first convolution layer to be a kernel of size
3× 3, while for ImageNet classification, we follow the standard ResNet architecture.

VGG-16. Detailed architecture is given in Table 3. Note that the original VGG-16 (Simonyan &
Zisserman, 2014) has 13 convolution layers and 3 FC layers. Instead of this original version, we
follow the architecture used in Frankle et al. (2020b,a), removing the first two FC layers while keeping
the last linear classification layer. This finally leads to a 14-layer architecture, but we still call it
VGG-16 as it is modified from the original VGG-16 architectural design. We base our implementation
on the GitHub repository8.

4https://anonymous.4open.science/r/SuperSeed-4834
5https://github.com/kuangliu/pytorch-cifar
6https://github.com/facebookresearch/open_lth
7https://github.com/pytorch/examples/tree/main/word_language_model
8https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
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Table 2: ResNet models used in our experiments. ResNet-18, ResNet-34 model, that are respectively
used for CIFAR-10, CIFAR-100 classification has the first convolutional layer with kernel size 3. The
shape of the output layer (fully connected layer) is changed according to the number of classes.

Layer ResNet-18 ResNet-34 ResNet-50

Conv 1
3×3, 64 3×3, 64 7×7, 64

padding 1 padding 1 padding 3
stride 1 stride 1 stride 2

Layer stack 1
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3

[
1×1, 64
3×3, 64
1×1, 256

]
×3

Layer stack 2
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4

[
1×1, 128
3×3, 128
1×1, 512

]
×4

Layer stack 3
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

Layer stack 4
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3

[
1×1, 512
3×3, 512
1×1, 2048

]
×3- -

FC Avg Pool, kernel 4 Avg Pool, kernel 4 Avg Pool, kernel 2
512× NUM_CLASSES 512× NUM_CLASSES 2048× NUM_CLASSES

LSTM. Detailed architecture is given in Table 4. The network has encoder/decoder at the first/last
layer, and two LSTM blocks in the intermediate layers. The embedding size is set to 1500, and the
number of hidden neurons at each LSTM block is set to 1500. We base our implementation on the
GitHub repository 9.

Table 4: Detailed information on LSTM architecture in our experiment.

Parameter Shape Hyper-param.

encoder.weight 33278× 1500 N/A

dropout N/A p = 0.65

lstm0.weight.ii/f/g/o 1500× 1500 N/A

lstm0.weight.hi/f/g/o 1500× 1500 N/A

dropout N/A p = 0.65

lstm1.weight.ii/f/g/o 1500× 1500 N/A

lstm1.weight.hi/f/g/o 1500× 1500 N/A

decoder.weight(shared) 1500× 33278 N/A

A.3 Hyper-Parameter Choices

In this section, we provide the hyper-parameter choices for creating/retraining the SEEDPQ.

A.3.1 Hyperparameters for creating SEEDPQ

We mostly follow the iterative magnitude pruning Renda et al. (2020) schedule for creating the
SEEDPQ, except for ImageNet experiments. For ImageNet experiments, we use a shorter pruning
period (5 epochs instead of 160 epochs) for each pruning rounds. For all cases, we use multi-step

9https://github.com/pytorch/examples/tree/main/word_language_model
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Table 3: VGG-16 models used in our experiments. We use Small-VGG-16, a modified version of
VGG-16 used in where the 13 convolutional layers are followed by 1 fully connected layer instead of
3. Affine batchnormalization is followed by a ReLU activation after each convolutional layer. Shape
for convolution layers follows (cin, cout, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3 × 64 × 3 × 3 stride:1;padding:1

layer2.conv2.weight 64 × 64 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer3.conv3.weight 64 × 128 × 3 × 3 stride:1;padding:1

layer4.conv4.weight 128 × 128 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer5.conv5.weight 128 × 256 × 3 × 3 stride:1;padding:1

layer6.conv6.weight 256 × 256 × 3 × 3 stride:1;padding:1

layer7.conv7.weight 256 × 256 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer8.conv9.weight 256 × 512 × 3 × 3 stride:1;padding:1

layer9.conv10.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer10.conv11.weight 512 × 512 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer11.conv11.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer12.conv12.weight 512 × 512 × 3 × 3 stride:1;padding:1

layer13.conv13.weight 512 × 512 × 3 × 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

pooling.avg N/A kernel size:1;stride:1

fc.weight 512 × 10

decay with decay rate of size 0.1 on fixed milestone epochs. Detailed hyper-parameter configurations
are given in Table 5. The overall training curve for each model and data pair is shown in Fig. 7.

Table 5: Hyper-parameters used for creating the SEEDPQ. We use the Github repository of OpenLTH
to perform the iterative magnitude pruning process.

Model Dataset Pruning Rounds Epochs Batch Size LR Multi-Step Milestone Gamma Pruning Rate

ResNet-18 CIFAR-10 20 160 512 0.1 [80, 120] 10 0.25

VGG-16 CIFAR-10 20 20 256 0.1 [80, 120] 10 0.25

ResNet34 CIFAR-100 25 200 256 0.1 [60, 120, 160] 10 0.2

VGG-16 CIFAR-100 20 160 256 0.1 [80, 120] 10 0.25

ResNet-50 ImageNet 20 5 256 0.1 [2,3,4] 10 0.25

LSTM WikiText-2 10 40 20 20 when validation loss is increasing 4 0.1

A.3.2 Hyperparameters for retraining from SEEDPQ and baseline methods

For each method considered, we used three learning rates (0.1, 0.01, 0.001) and two different learning
rate schedule (multi-step decay, cosine annealing) and measured the validation accuracy on each.
We chose the combination that gave the highest final validation accuracy. Detailed hyper-paramter
configurations are given in Table 6.
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Figure 7: Generation of SEEDPQ using iterative pruning algorithm. Each legend represents (pruning
rate / number of epochs). We measure the test accuracy after retraining from after each pruning round.
Note that for ResNet-50, ImageNet, each pruning round is 5 epochs (instead of 90 epochs used for
full training), thus the curve is not reaching the full accuracy even in the 100% sparsity regime.

Table 6: Hyper-parameters used for retraining the SEEDPQ. We use cosine annealing learning rate
schedule for all model, dataset pairs as it resulted in largest highest accuracy for all cases.

Model Dataset Sparsity Epochs Batch Size LR

ResNet-18 CIFAR-10 0.32% 30 64 0.01

VGG-16 CIFAR-10 0.32% 30 64 0.001

ResNet34 CIFAR-100 0.38% 30 256 0.01

VGG-16 CIFAR-100 0.32% 30 256 0.01

ResNet-50 ImageNet 0.32% 90 256 0.1

LSTM WikiText-2 38% 40 20 20

A.3.3 Hyperparameters for reinitializing zero weights during retraining

We note that extremely sparse networks often have disconnected parts of the network where there
are no gradient information to update the weights during the retraining phase. We overcome this
by randomly reinitializing a small fraction of zero components of the network. To be more specific,
for every 5 epochs, we reinitialize 20% of the pruned elements to a value randomly sampled from
Kaiming normal distribution scaled by 0.01.

B Additional Experimental Results

B.1 Weight distribution comparison

We observe the weight distribution of our sparse and quantized SUPER SEEDS and a randomly
initialized network with layer-wise matching ratio (MR) before and after training. The histograms
shown in Fig. 4 shows that change in the weight distribution of SUPER SEEDS is smaller than MR.
This can also be seen in Table 7 which shows the distance between the initial and final model after
training process.
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Figure 8: Performance of SUPER SEEDS, generated with different sparsification methods on CIFAR-
10, VGG-16. We consider (1) iterative magnitude pruning (IMP) with learning rate rewinding (Renda
et al., 2020), iterative train-prune-quantization (TPQ) method, and (3) planting small, fully dense
model to a large sparse network. We use IMP with learning rate reweinding method to create all
SEEDPQ since it outperforms other methods.
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Figure 9: Performance of different retrain algorithms. We compare different fine-tuning options
described in Section 4. All layers perform dense training in the entire network while last layer and
batch norm trains only the linear classifier and batch norm layer, respectively. LP-FT (Kumar et al.,
2022) first trains the linear classifier for few epochs and then trains the entire model. Sparse training
method only trains the non-zero elements and does not update the pruned weights.

RANDOM DENSE MATCHING RATIO SUPER SEEDS
Epoch 0, ∥w0∥ 75.0742 65.1691 78.5013
Epoch 150, ∥w150∥ 29.6695 50.5017 74.3063
Distance, ∥w150 −w0∥ 74.8466 21.2913 8.1473

Table 7: We see that the model does not move very far for SUPER SEEDS, as compared to the
baselines of training a dense network from scratch and training a network initialized with Matching
Ratio.

B.2 Comparison with different sparsification method

While we emphasize again that the novelty of our paper is in the exploration of extremely compressed
regime, we show the performance of our SUPER SEEDS created using different sparsification methods.
These include (1) iterative magnitude pruning (IMP) with learning rate rewinding (Renda et al.,
2020) where the learning rate is reset to default learning rate schedule after each pruning round, (2)
iterative train-prune-quantization (TPQ) method where quantization is performed after pruning in
each pruning round, and (3) planting a small, fully dense, network planted inside a larger, but sparser
network. Based on the results shown in Fig. 8, we focus on (1) IMP with learning rate rewinding to
create SUPER SEEDS in our experiments.

B.3 Comparison with different retraining methods

We provide experimental results in Fig. 9 on different methods to retrain our SUPER SEEDS mentioned
in Section 4. Based on the result that training all layers outperforms all the other methods, we decided
to restrict the scope of our experiments to training all layers.
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Figure 10: Downstream task-specific transfer learning with SEEDPQ on Caltech101 dataset with
ResNet-18. The yellow curve corresponds to training a dense model from scratch and the pink curve
corresponds to retraining Super Seed.

B.4 Transfer learning task

We performed Transfer Learning for a SUPER SEEDS created for Caltech101 dataset. For this, we
took a ResNet18 model pretrained on Imagenet and created SUPER SEEDS for it using the Caltech101
dataset. We see in Figure 10 that this SUPER SEEDS trains to a higher test accuracy than simply
training a model on Caltech101 from scratch.
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